CanRCM

J. Scinocca

Y Jiao, M. Qian, S. Kharin, M. Lazare, D, Akingunola, C. Whaley, J. Cole, C. Seinen, N. Swart

CCCma Regional Climate Model

the CanESM

• Primary Goal: Downscale climate predictions/projections made with

over "regional/local" domains

• Dynamical Downscaling: one-way driving of a limited-area/regional climate model (RCM) by a global climate model

CanRCM4 Construct

- Employ "one-way nesting" of atmospheric component of CanESM
- Retain CanAM4 physics package to exploit its multi-decadal development
- Employ NWP limited-area dynamical core to drive AM4 physics

CanRCM4 Construct

- Employ "one-way nesting" of atmospheric component of CanESM
- Retain CanAM4 physics package to exploit its multi-decadal development
- Employ NWP limited-area dynamical core to drive AM4 physics

Coordinated Global and Regional Climate Modelling

 <u>Coordination</u> and <u>strict physics compatibility</u> between global and regional model offers a number of advantages not available to <u>independent</u> regional climate modelling centres

Advantages:

- 1) Physics <u>Development and Scalability</u>
- 2) RCM domain transferability issues are absent
 - understanding of global physics biases from CanAM global properties
- 3) Improved <u>RCM driving</u> (all field)
 - in addition to U,V,T,q, CanRCM has boundary driving data for all tracers from CanAM
- 4) Concept of <u>value added</u> more clearly defined
 - CanESM projections must exist before CanRCM downscaled projections are made. What, if any, additional value is associated with CanAM

Scinocca et al. JCLIM (2015)

Primary value-added in CanRCM4 comes from better resolved topography

Environment and Environmement et Climate Change Canada

Environnement et **trom bet** Changement climatique Canada

CanRCM4 (CanESM2) Utilization

CORDEX		Resolution	Ensemble Members	Years	
Evaluation	{	0.44º (50km) 0.22º (25km)	1 1	1989-2009 1989-2009	
<u>Historical</u>	{	0.44º (50km) 0.22º (25km)	5 5	1950-2005 1950-2005	
<u>RCP4.5</u>	{	0.44º (50km) 0.22º (25km)	5 5	2005-2100 2005-2100	
<u>RCP8.5</u>	{	0.44º (50km) 0.22º (25km)	5 5	2005-2100 2005-2100	
CanSISE large ensemb	le				
<u>Historical</u>	{	0.44º (50km) 0.22º (25km)	50 1	1950-2005 1950-2005	
<u>RCP8.5</u>	{	0.44º (50km) 0.22º (25km)	50 1	2005-2100 2005-2100	
CanSIPS hindcast dow	ns	caling			
(proof of concept)		0.44º (50km) 0.22º (25km)	JFM, JAS JFM, JAS	1981-2010 1981-2010	

NA

domain

• generally, we have made **CanRCM4** output data freely available to the community or performed a few special runs with additional output

• **CanRCM4** model output has been used for <u>more than 90</u> national and international peerreviewed scientific studies and assessments. Canadian users include, <u>12 Canadian</u> <u>Universities;</u> two regional climate impacts Consortia (the Pacific Climate Impacts Consortium and the Consortium on Regional Climatology and Adaptation to Climate Change); <u>multiple federal departments</u> of Agriculture and Agri-Food Canada, Environment and Climate Change Canada, Fisheries and Oceans Canada; the Public Health Agency of Canada; and the <u>provincial ministry</u> of Natural Resources and Forestry (Ontario).

CanRCM5 Construct

- GEM5: interface developed to switch between physics packages (NWP/Climate)
- CanESM repository is now the single source of physics code for both spectral and S/L
- Testing and evaluation of global GEM configuration with CanAM5 physics

CanRCM5 Properties

- Coordinated global/regional modelling with physics compatibility
- updated physics package from CanAM4 (CMIP5) to CanAM5 (CMIP6)

Application of run-time bias corrections:

- 1) Runtime bias corrected large-scale driving
 - bias corrected CanAM5 based on CanESM5 projections following Kharin and Scinocca (2012), Krinner et al. (2020)
- 2) Runtime bias corrections within CanRCM5
 - currently under development
- 3) Runtime bias corrected lake-surface water temperature and lake ice of large-scale lakes.
 - improve lower boundary forcing from parameterized thermodynamic lake model (CSLM *MacKay 2012, MacKay et al. 2017*) when representing lakes that become resolved in the RCM

CanRCM5 Applications

• Cordex-CMIP6

- Deeper integration with CanSIPS for predictions and CanESM5 for projections
- Flood Hazard Identification and Mapping Initiative: Large 3-year proposal with with climate-change component (NRCan, ECCC, PSC)
 - G&C support: Ouranos; PCIC; U. of Calgary; U. Saskatchewan; U. Laval; McMaster
- Climate Change Impacts on the Security of the Electricity Transmission and Distribution System of Portland General Electric

- Oregon State University

• Great Lakes Water Levels: Improved estimates of Net Basin Supply from historical and future projections of CanRCM5.

- Frank Seglenieks Water Resources Eng. MSC

• Climate Impacts on Salish Sea: Driving data for further downscaling (WRF)

- A. Holdsworth, IOS; R. Stull, UBC